Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769977

RESUMO

The decay kinetics of Gd3Al2Ga3O12:Ce3+ single crystal luminescence were studied under dense laser excitation. It was shown that the decay times as well as the intensity of Ce3+ luminescence depend on the excitation density. The observed effects were ascribed to the interaction between excitons as well as to the features of energy transfer from the excitons to Ce3+. The numerical simulation of the experimental results was performed for justification of the proposed model.

2.
J Phys Condens Matter ; 35(11)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36580683

RESUMO

We develop a fully quantum theoretical approach which describes the dynamics of Frenkel excitons and bi-excitons induced by few photon quantum light in a quantum well or wire (atomic chain) of finite lateral size. The excitation process is found to consist in the Rabi-like oscillations between the collective symmetric states characterized by discrete energy levels. At the same time, the enhanced excitation of high-lying free exciton states being in resonance with these 'dressed' polariton eigenstates is revealed. This found new effect is referred to as the formation of Rabi-shifted resonances and appears to be the most important and new feature established for the excitation of 1D and 2D nanostructures with final lateral size. The found new physics changes dramatically the conventional concepts of exciton formation and play an important role for the development of nanoelectronics and quantum information protocols involving manifold excitations in nanosystems.

3.
Materials (Basel) ; 15(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36234185

RESUMO

The structural and luminescence properties of undoped Y1-xScxPO4 solid solutions have been studied. An intense thermally stable emission with fast decay (τ1/e ~ 10-7 s) and a band position varying from 5.21 to 5.94 eV depending on the Sc/Y ratio is detected and ascribed to the 2p O-3d Sc self-trapped excitons. The quantum yield of the UV-C emission, also depending on the Sc/Y ratio, reaches 34% for the solid solution with x = 0.5 at 300 K. It is shown by a combined analysis of theoretical and experimental data that the formation of Sc clusters occurs in the solid solutions studied. The clusters facilitate the creation of energy wells at the conduction band bottom, which enables deep localization of electronic excitations and the creation of luminescence centers characterized by high quantum yield and thermal stability of the UV-C emission.

4.
Heliyon ; 8(6): e09754, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35800729

RESUMO

Despite the clinical acceptance of ToF-PET, there is still a gap between the technology's performance and the end-user's needs. Core to bridging this gap is the ability to develop radiation detectors combining a short attenuation length and a sub-nanosecond time response. Currently, the detector of choice, Lu2SiO5:Ce3+ single crystal, is not selected for its ability to answer the performance needs, but as a trade-off between requirements and availability. To bypass the current performance limitations, in particular restricted time response, the concept of the heterostructured detector has been proposed. The concept aims at splitting the scintillation mechanisms across two materials, one acting primarily as an absorber and one as an ultra-fast emitter. If the concept has attracted the interest of the medical and material communities, little has been shown in terms of the benefits/limitations of the approach. Based on Monte Carlo simulations, we present a survey of heterostructure performance versus detector design. The data allow for a clear understanding of the design/performance relationship. This, in turn, enables the establishment of design rules toward the development and optimization of heterostructured detectors that could supersede the current detector technology in the medical imaging field but also across multiple sectors (e.g. high-energy physics, security).

5.
Nanoscale ; 13(46): 19578-19586, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807212

RESUMO

We explore the effect of the shell thickness on the time response of CdS/CdSe/CdS spherical quantum wells (SQWs) nanoscintillators under X-ray excitation. We first compare the spectral and timing properties under low and intense optical excitation, which allows us to identify the complex temporal and spectral response of the highly excited species. We find that a defect-induced delayed luminescence appears at large sizes. Under pulsed X-ray excitation, an analysis of the scintillation decay time reveals that multiexcitons are generated, similarly to the intense optical excitation and that the shell thickness does not change the fraction of fast component to a large extent. We performed a two-step simulation of the energy relaxation in the SQWs which reveals that large-size SQWs favor a very high number of excitations per particle, which, however, is counterbalanced by increased Auger quenching, rendering large SQWs less effective regarding the timing performance.

6.
Nanoscale ; 7(13): 5744-51, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25746211

RESUMO

Scintillating nanoparticles (NPs) in combination with X-ray or γ-radiation have a great potential for deep-tissue cancer therapy because they can be used to locally activate photosensitizers and generate singlet oxygen in tumours by means of the photodynamic effect. To understand the complex spatial distribution of energy deposition in a macroscopic volume of water loaded with nanoscintillators, we have developed a GEANT4-based Monte Carlo program. We thus obtain estimates of the maximum expected efficiency of singlet oxygen production for various materials coupled to PS, X-ray energies, NP concentrations and NP sizes. A new parameter, ηnano, is introduced to quantify the fraction of energy that is deposited in the NPs themselves, which is crucial for the efficiency of singlet oxygen production but has not been taken into account adequately so far. We furthermore emphasise the substantial contribution of primary interactions taking place in water, particularly under irradiation with high energy photons. The interplay of all these contributions to the photodynamic effect has to be taken into account in order to optimize nanoscintillators for therapeutic applications.


Assuntos
Transferência de Energia/efeitos da radiação , Modelos Estatísticos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Fotoquimioterapia/métodos , Raios X , Simulação por Computador , Método de Monte Carlo , Doses de Radiação , Oxigênio Singlete/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...